Exchange of Substances - Mark Scheme ## Q1. | Question
Number | Acceptable Answer | | Additional
Guidance | Mark | |--------------------|--|-----|------------------------|------| | | An explanation that makes reference to five of the following: | | | | | | rate of diffusion is
proportional to surface area -
alveoli have large surface area | (1) | | | | | rate of diffusion is
proportional to difference in
concentration – breathing
maintains a difference in gas
concentrations | (1) | | | | | rate of diffusion is
proportional to difference in
concentration – blood flow
maintains a difference in gas
concentrations | (1) | | | | | rate of diffusion is inversely
proportional to diffusion
distance – walls of alveoli and
capillaries are one cell thick | (1) | | | | | diffusion distance is reduced
due to flattened cells forming
alveoli and capillary walls | (1) | | (E) | | | rate of diffusion is proportional to diffusion constant – cell membranes are relatively permeable to non-polar gas molecules | (1) | | (5) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | (a) | idea of large surface area to volume ratio or that it is
thin (body); | IGNORE flat, small unqualified, thin membrane, thin skin etc NOT cell wall | | | | idea that this helps diffusion e.g. short diffusion
distance, faster diffusion; | IGNORE gas exchange NOT osmosis | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (b)(i) | 1. solubility of oxygen decreases as temperature increases | ACCEPT converse, negative correlation | | | | / eq ; | 2. units not required but if given then they must be | | | | 2. credit correct manipulation of figures; | correct e.g. 8.2 mg dm ⁻³ difference in solubility between 0 and 40 °C, solubility halved between 5 °C and 40 °C | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|-------------| | (b)(ii) | idea that there is quite a lot of dissolved oxygen in the water at this temperature; idea of oxygen concentration gradient (between water and flatworm's cells); idea of enzyme activity being temperature-dependent; idea that water below 15°C would be too cold for {enzymes / metabolism / eq} to work effectively; idea that it is a balance between oxygen availability and {enzyme activity / kinetic effects /eq}; | IGNORE there is most oxygen available 1. ACCEPT sufficient O ₂ , not enough O ₂ at higher temps. 2. Ref. to diffusion or gas exchange alone, not sufficient for the mark 3. ACCEPT e.g. 15°C is optimum for their enzymes NB: This is for linking enzymes and temperature, Mp4 is a development of Mp3 stating something specific. 4. IGNORE ref to effects above 15°C | | | Question
Number | Answer | Additional Guidance | (3)
Mark | | (c) | heart needed to {pump / move / eq} blood (around the body); | | |-----|---|---| | | 2. reference to mass flow ; | | | | idea that many animals have a small surface area to volume ratio ; | | | | idea that a circulatory system is needed to overcome limitations of diffusion / eq; | 4. ACCEPT idea that diffusion is not sufficient | | | | 5. oxygenated blood not enough by itself
ACCEPT any appropriate molecule in the blood
ACCEPT idea of thermoregulation e.g. heat | | | 6. idea that many animals have a high metabolic rate ; | (4 | # Q3. | Question
Number | Acceptable Answer | | Additional
Guidance | Mark | |--------------------|---|-----|------------------------|------| | | A description that makes reference to the following: | | | | | | fluid refers to
the movement of
the
phospholipids in
the plane of the
membrane | (1) | | | | | mosaic refers to
the random (
association of
proteins (of
different shapes
and sizes) within
the membrane | (1) | | (2) | ## Q4. | Question
Number | Answer | Additional Guidance | Mark | |---------------------|---|--|---------| | (a)
Q W C | (QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | QWC emphasis is spelling
Penalise once only | | | | 1. alveoli one cell thick / thin (epithelium); | | | | | {walls / endothelium } of capillaries { one cell thick /
thin}; | IGNORE capillaries are one cell thick NOT one cell thick membrane, cell wall | | | | 3. Alveoli covered with capillaries / eq; | wdii | | | | 4. idea of short (diffusion) distance; | A Assert Man A and E if different about | | | | 5. reference to diffusion; | 4. Award Mps 4 and 5 if diffusion stated | | | | idea of large surface area provided by {alveoli / capillaries}; | 6.IGNORE 'many alveoli' | | | | idea that concentration gradient maintained by
{ventilation / breathing /eq }; | | | | | ref. to large numbers of red blood cells OR idea that
oxygen combines with haemoglobin; | | | | | idea that concentration gradient maintained by blood
flow; | | | | | 10. {reference to / description of} Fick's Law; | 10. Diffusion rate is proportional to the surface area | (5) Exp | 3 | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------------| | (b) (i) | 1. Idea that blood carries {oxygen / carbon dioxide} ; | 1. ACCEPT oxygenated blood | | | | Idea that blood moving maintains concentration gradient | 3. IGNORE mass transport | | | | 3. Reference to mass flow ; | 4. IGNORE <i>Daphnia</i> has a large surface | | | | Idea that organs have large surface area to volume ratio | area | (2)
Exp | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--------------------------|---------| | (b) (ii) | idea that one side (of heart) transports blood to the lungs
other to the body; | | | | | 2. separation of oxygenated and deoxygenated blood / eq ; | | | | | 3. idea of maintaining concentration gradient; | | | | | comment on blood pressures e.g. lower to lungs, higher to
body; | | | | | Reference to mass flow / supply of O2 to body cells
maximised; | 5. IGNORE mass transport | | | | idea of need for a good supply of oxygen as (mammals are)
{very active / high rate of metabolism / warm blooded / eq} | | | | | | | (3) Exp | ## Q5. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|---------| | (a) | reference to phospholipid bilayer; | Read what is written on the lines first
Accept points made on a clearly labelled
diagram
If diagram and description contradict then
Mp not awarded | | | | correct orientation and structure of the phospholipids in
the bilayer; | ACCEPT heads on outside and each with two tails if drawn NOT if gap between phospholipids is too large e.g. as large as a phopholipid in the diagram | | | | explanation of why the phospholipids are orientated the
way they are e.g. heads attracted to water OR tails
repelled by water; | 3. ACCEPT ref to heads being hydrophilic OR tails hydrophobic OR explained in terms of polarity | | | | 4. proteins in the membrane (described / shown); | | | | | idea of two different locations of proteins e.g. extrinsic,
intrinsic, transmembrane; | 5. If only one protein located then still get Mp4 | | | | 6. glycoproteins / glycolipids (described / shown); | | | | | idea of cholesterol within the membrane (described / shown); | | (5) Exp | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|-------------| | (b) | 1. small; | 1. NOT 'size' alone | | | | 2. non-polar / non -charged ; | ACCEPT ref. to polar if correctly qualified | | | | 3. lipid soluble / eq ; | ACCEPT solubility in lipids NOT just
'solubility' NOT 'water soluble' ACCEPT 'fat soluble' | | | | idea that they are recognised by (specific) protein receptors
/eq; | ACCEPT Tat soluble | (2)
Grad | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|-------------| | (c) | Similarity any one from: 1. use {carrier / channel} proteins OR 2. transport {hydrophilic / eq} molecules / named molecule; Difference any one from: 3. idea that active transport requires {energy / ATP} / facilitated diffusion does not require {energy / ATP} OR 4. active transport moves molecules against a concentration gradient / facilitated diffusion allows molecules to move down a concentration gradient / eq; | IGNORE protein unqualified IGNORE transport protein ACCEPT charged / polar | (2)
Grad | Q6. | Question
Number | Acceptable Answer | | Additional
Guidance | Mark | |--------------------|---|-----|------------------------|------| | | An explanation that makes reference to the following: | | | | | | partially permeable
membrane is a
barrier to some
solutes but not water | (1) | | | | | enables a
concentration
gradient of { solutes
/ water } | (1) | | (2) | Q7. | Question | Acceptable Answer | Additional | Mark | |----------|---|------------|------| | Number | | guidance | | | | A description that makes reference to the following: | | | | | B is a channel protein (1) | | | | | which allows the movement of
{large / charged / polar} molecules (1) | | | | | by diffusion from high concentration to low
concentration / down concentration gradient (1) | | (3) |